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Background - Traffic Congestion

Exhibit 4. Congestion Growth Trend — Hours of Delay per Auto Commuter
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Deterministic Model - Overview

» Spatial decomposition
 Partition road into cells.
* Types of cells: origin (0), ordinary (£),

diverge (V), intersection (J), merge (M),
destination (D).

* Temporal decomposition et
 Divide time horizon in time steps as {1, -+, T}. _—a

* Cell Transmission Model (CTM)" N

Flow capacity
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/ Jam density
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* Daganzo, C. (1992). The cell transmission model. part II: Network traffic.




Deterministic Model - Variables, Parameters,
Objective Function and Constraints

 Relax dynamic equation constraints * Variables
* Transform them into linear constraints y: Number of Veh%cles %ea\.nng cell
 Add term in objective function to maximize n: Number of vehicles inside cell

the flow of vehicles. z: Indicator of which cycle and phase of
green time this time step is in

* Parameters
Q: Flow capacity
f: Turning ratio
T T W' Ratio between shock-wave propagation

min 2D =) ) (T —t)ya speed and the flow-free speed

cep = cec = N:Jam density
D: Demand
n'™t: Initialized number of vehicles
N, : Number of cycles

R: Set of intersections

 Final objective function
* Maximize throughput of network
* Maximize the flow of vehicles



Deterministic Model - Flow-balance Constraints

* Flow-balance constraints are different for different types of cells.

* Flow-balance constraints are for each cell and time step. Number of vehicles leaving cell is bounded

_ ‘ by number of vehicles inside cell.
Yot <Nty VeelC, t=1,---.T

Yet < Qet, Ve EEUOUMUY, t=1,---.T Number of vehicles leaving cell is bounded
N,

Ney _ | B by the flow capacity of this cell.
Yot < Z(:l,jjjff + Zaijirt — 1)Qq. Ve € I‘;J‘. VieR. VjeF, t=1,---.1

i'=1
vt < Qun Ve € C/V. Ve ed(e) t=1.-- T Number of vehicles leaving cell is bounded

Ney by the flow capacity of processing cell.

BeeYet < Z(:lijj’f + Z22ijj't — 1)Qu, YeeV, Vie R, VjeF, Ve e (1’((‘) N I,J t=1,---.T

- / :\1 ——— - Number of vehicles leaving cell is bounded
Jet < v(,f ;T(.I — Nty )y Ve € s Sl . t=1,---, :
Yet {(New = nen), Ve € C/V, Ve € d(c) | by the number of vehicles that can enter
BeerVet < Wert(Nuy —ngy), Yee V, ¥ €d(e), t=1,---,T

processing cell.

Net+1 = Net + Z Yert — Yet, Ve €C/OJI, t=1,---,T
c'eple)

Mets1 = 1ot + Doy — g, Ve € O, L =1, o+ T Dynamic equations of flow balance.

Net41 = Net + Z Berelert — Yot Ve €L, t=1.---,T

¢ep(c)

- [nitial constraints.
ne =n™, YeeC | — |

Yt =0, net >0, VeelC, t=1,---,T



Deterministic Model - Signal Constraints

Optimize green time, cycle length and
offset.
Phase sequence: 1—2—3—4,

Phase 1 Phase 2 Phase 3 Phase 4
Use integer variables to describe ‘if-then’

constraints.

* Variables and parameters

z: Indicator integer variable

b, e: Begin and end time of green phase
g: Green time, [: Cycle length, o: Offset
U, €: Sufficient large and small
parameters for ‘if-then’ constraints
Gmin> Gmasx: Minimum and maximum
green time

— U - Z1ijj't +e <t — €ijj’ < (-(1 — :li_jj"t)- Vie R, _}-! =1,.-- .:\'(_.y. t=1.---.T
—U - =204t +e < h;‘jji —t < (V(l — :ggjjrf). Vi e R, V] cF.t=1.---.T

> i+ a2 <5, F =1+ Ny, t=1,--- T

JEF
0, <l;. VieR
. . g . If time step t is during green
bi]_j! = l'i].j’ . _j’ — Oy V? - R _]’ =1.---, .\(_-y tlme [b ,pe ,] thengzg .=
. y § iyt 1ijj't —
eyt = bijr +gi1, ViER, j =1,---, Ngy Zyijjre = 1.
i)igjf = €415/, VieR. _j’! =1,--- '-\'(.’y
€iojr = bigjr + gia, Vi€ER, j' =1,--- | N Computation of start and end
bisyr = cingr. Vi €R. j/ =1, Ny t¥me of green phase given green
' ' y S time, offset and cycle length.
€435/ = biiij" +gi3. VieR., 7 =1.---. _\{;y
}?iﬁljf = (?3'3‘]'!. Vi e R _]-’ =1.---. ‘\'(_,y
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Deterministic Model — Distributed Formulation

* Input boundary cells: receiving inflow from cell of neighboring area.

* OQutput boundary cells: sending outflow to cell of neighboring area.

min Z( ZZ'M—“ZZ “”"') U

=1 ceD; t= c€C; t=
s.t. [A;x; =a;, VieR Write constraints for non- _— —_—
. . — —
B;x;+Vv;=b; VieR boundary cells into matrix form.
Yot + Sct = WNet — Wy, ,, Vi€ R, Ve € B, t=1,---,T U
Net4+1 = Net + Uy, , — Yet, VIER, Ve € B,’. t=1,---.,T
W =Xi, VieER T Maintain constraints — " —
v; >0, VieR between intersection.
xP<x; <x" VieR H
Z1ijj'ts 22ijj't - {() l} Vi € R, \7/] € F, _j/ =1,--- --\7('.1/- bi= 100 ;0



Algorithm - Alternating Direction Method of

Multipliers (ADMM)

* Lagrangian function

1=1 ceD; t=1 ceC; t=1

Lx,u,V.K, A\ V) =Z( ZZ”&_“Zi

- IL U( f)
N,

L . .
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B t=1
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E E Net+1 — Nt + Yot — Uy, , + ;_;(,._,g) )
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* Algorithm steps

* Step 1: Minimize Lagrangian function
with respect to x.

x1+1 [

— aromin, .~ L(x.u'. v k! ALl oY)
O XeC, )

» Step 2: Minimize Lagrangian function
with respect to z.
[+1

I+1

Z = argmin, . L(x7 ", u, v, kAL ,ufr. u‘r)

» Step 3: Update dual variables.
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Algorithm - Alternating Direction Method of
Multipliers with Heuristic

e Distributed form

min Z( >, Z”sf —”Zi

S. L.

T —1)y.: )
=1 c€D; t=1
Ax;=a;, VieR
B;x;i +v;=b;, Vie R
Yet + Set = W Nt — Wy, ,, VieR, Vee Bf). p

ceC; t=1

Net41 = Net + Uy, ,

. X, W x. VicK

-t

v, >0, VieR
x.-'b < X; S X”h. VieR
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 Variable update

» Update of integer variables are different

ul Hl—P (2 40
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ug H—l _ Pg ( V[)
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T
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Stochastic Model

 Stochastic parameters: turning ratio () and demand (D).
Assumption: known distribution of stochastic parameters.

First-stage variables - decisions made "here and now"
* Begin and end time of green phase (b, €), green time (g), offset (0), cycle length (1) and corresponding
integer variables (z4, z,).
Second-stage variables - "wait and see" recourse decisions
* Number of vehicles leaving (y) and inside each cell (n).

Two-stage stochastic program formulation
* Use 6 to estimate the objective value of second stage problem.
 First-stage problem K
(master problem) min ) p*o*F
k=1

s.t. Signal constraints and previous added cuts

T T
* Second-stage problem ¢* — pin  — Z Z nk, — a Z Z(;r —t)yk
(subproblem) ceD t=1 ceC t=1
s.t. Flow constraints for each scenario



Algorithm - Distributed Benders Cut with Cycle
Estimation

 Benders cut - for each iteration, add constraints of 8 and first-stagq variables based on the dual
solution of subproblem to master problem. 0% > Fj(z1. . pF. 6% 7% 5% oF #F)
* Distributed Benders cut

 Signal constraints are separate for each intersection. Solve master problem for each intersection
separately.

K
min E p*o*
k=1

s.t. Signal constraints and previous added cuts for each intersection

* The constraint in Benders cut can be written as summation of variables of each intersection. Add
constraints to master problem of each intersection separately. 0% > F} (21, 20, ¥, 6%, 75, 5%, 6%, 7F)
* Estimation of cycle - reduce the number of integer variables
* Use the cycle length of previous iteration to estimate the cycle each time step is in.
* Before estimation: consider z,, z, for every cycle j' = 1, -+, N, to indicate if the time step is in cycle j'.

* After estimation: consider z;, z, for only two cycles j' = |t/l],[t/l] to indicate if the time step is in
cycle j'.



Result

* Settings

Grid network size: 4 X 4, time horizon: 200s, number of
scenarios: 10

Flow capacity: Q = 2 for intersection cells, Q = 4 for other cells.
Jam density: N = 8 for intersection cells, N = 16 for other cells.
Minimum green time: 12s, maximum green time: 32s

Demand: Poisson distribution with mean randoml
enerated from [0.4,1.2] (west-east direction) and f,O.Z, 0.6]
%south-north direction)

Turning ratio: Randomly selected from given possible turning
ratio set

 Problem size

12800 integer variables, 501728 continuous variables,
1176448 constraints.

* Performance

Gurobi: no feasible solution with 7200s time limit.

Benders cut: cannot solve master problem with 7200s time
limit after 1 iteration.

Distributed Benders cut: Obtain solution after 40 iterations
(14000s).

Distributed Benders cut with cycle estimation: Obtain
solution after 40 iterations (9500s).




Result of Distributed Benders Cut with Cycle
Estimation

* Grid network size: 4 X 4, time horizon: 200s (50 time steps), number of
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Original Signal Control Plan Provided by Distributed
Benders Cut with Cycle Estimation

* Eachline is corresponding to an intersection.

» Different color segment indicates the time period of different phases.
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Ratio of Number of Vehicles and Jam Density in Cells
Simulated Based on Original Signal Control Plan

* Each graph is corresponding to a corridor.

* The moving direction of corridor is from west to east.
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Ratio of Number of Vehicles and Jam Density in Cells
Simulated Based on Original Signal Control Plan

* Each graph is corresponding to a corridor.
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Ratio of Number of Vehicles and Jam Density in Cells
Simulated Based on Original Signal Control Plan

» Each graph is corresponding to a corridor.

* The moving direction of corridor is from north to south.
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Ratio of Number of Vehicles and Jam Density in Cells

Simulated Based on Original Signal Control Plan

* Each graph is corresponding to a corridor.

nterse

The moving direction of corridor is from south to north.
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Future Work

* Apply model and algorithm to solve larger instance.

* Employ parallel computing to solve problem in each iteration.



Thank you!
Questions?
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